Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.614
Filtrar
1.
Sci Total Environ ; 926: 171940, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527539

RESUMO

Saltmarsh, a prominent buffer ecosystem, has been identified as an important sink for nitrogen (N) pollutants from marine- and land-based anthropogenic activities. However, how the enriched anthropogenic N impacts saltmarsh sustainability has been neglected due to limited understanding of marsh resilience based on seedling establishment and population dispersal under anthropogenic N inputs. This study combined mesocosm experiments and model simulations to quantify the effects of increased anthropogenic N on the seedling-based vegetation expansion of Spartina alterniflora. The results indicated that seedling survivals, growth rates, and morphological indicators were inhibited by 20.08 %, 37.14 %, and > 35.56 %, respectively, under 1.5 gN/kg anthropogenic N. The sensitivity rate of vegetation expansion was increased by 70 % with 1 gN/kg increased N concentration under the scenario of low seedling density (< 15 m/yr). These findings revealed an important unidentified weakness of the marsh development process to anthropogenic N inputs. Finally, we highlighted the importance of appropriate protection measures to control nutrient pollution in salt marshes. Our study provides new insights for enhancing the resilience and sustainability of saltmarsh ecosystems.


Assuntos
Ecossistema , Resiliência Psicológica , Plântula , Nitrogênio , Áreas Alagadas , Poaceae/fisiologia
2.
Sci Total Environ ; 926: 171605, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38461991

RESUMO

Iron-bound organic carbon (OC-FeR) is important for the stability of soil organic carbon (SOC) in salt marshes, and the Spartina alterniflora invasion reshaped local salt marshes and changed the SOC pool. To evaluate the effects of S. alterniflora invasion on the contribution of OC-FeR to SOC, we determined the OC-FeR content and soil characteristics in the 0-50 cm soil profile along the vegetation sequence, including mudflats (MF), S. alterniflora marshes established in 2003 (SA03) and 1989 (SA89), the ecotone of S. alterniflora and Phragmites australis (SE), S. salsa marsh (SS), and P. australis marsh (PA). The SOC content was 6.55-17.5 mg g-1 in the S. alterniflora marshes. Reactive iron oxides (Fed, Feo, Fep) accumulated significantly in the S. alterniflora and P. australis salt marshes. PA and S. alterniflora marshes had higher DOC contents of 0.28-0.77 mg g-1. The OC-FeR content in the 0-50 cm soil profile in these ecosystems ranged from 0.3 to 3.29 mg g-1, with a contribution to the SOC content (fOC-FeR) of approximately 11 %, which was highest in SA03 (16.3 % ~ 18.8 %), followed by SA89, SE, and PA. In addition, the molar ratios of OC-FeR to Fed were <1, indicating that the iron oxides were associated with SOC through sorption more than coprecipitation. According to the structural equation model, SOC, DOC and iron oxides were the direct driving factors of OC-FeR formation, while the vegetation zone indirectly functioned by regulating organic C inputs, iron oxide formation, and pH. This study suggested that S. alterniflora invasion promotes iron-bound organic carbon accumulation by increasing organic C inputs and regulating iron oxide formation in salt marshes, but such promotion will degenerate with development duration.


Assuntos
Compostos Férricos , Solo , Áreas Alagadas , Solo/química , Ecossistema , Carbono/análise , Ferro , Espécies Introduzidas , Poaceae/fisiologia , Óxidos , China
3.
Sci Total Environ ; 924: 171502, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38453070

RESUMO

Deciphering the biogeochemical coupling of multiple elements in soils could better mechanistic understanding of ecosystem stability response to the alien invasion. The coupling of 45 elements in soils from wetlands covered by Spartina alterniflora (Sa) was compared with that in soils covered by native Phragmites australis (Pa) in coastal regions of China. Results showed that S. alterniflora invasion not only significantly reshaped geochemical enrichment and dispersion states, but also decoupled the coupling of multiple elements in soils compared with Pa. Atomic mass emerged as the primary factor governing the coupling of multiple elements, of which a significantly positive correlation exhibited between atomic mass with elemental coupling in Pa, but no such relation was observed in SaThe coupling of lighter elements was more susceptible to and generally enhanced by the invasion of S. alterniflora compared to the heavier, of which carbon, iron (Fe), and cadmium (Cd) had the highest susceptibility. Besides atomic mass, biological processes (represented by soil organic carbon, nitrogen, phosphorus, and sulfur), interactions between sea and land (represented by salinity and pH), and their combination explained 17 %, 10 %, and 13 % variation in the coupling of multiple elements, respectively. The present work confirmed that S. alterniflora invasion was the important factor driving soil multi-element cycling and covariation in coastal wetlands.


Assuntos
Ecossistema , Áreas Alagadas , Solo , Carbono/análise , Espécies Introduzidas , Poaceae/fisiologia , China
4.
Sci Rep ; 14(1): 4090, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374335

RESUMO

Nitrogen and phosphorus resorption (NRE and PRE) is a critical nutrient conservation mechanism maintaining plant growth in already disturbed barren ecosystems. The complexity of plant nutrient resorption variations in long-term grazing regions is regulated by plant traits, nutritional utilization strategies, and soil conditions following changes in grazing patterns. Therefore, a detailed investigation into their underlying mechanism is still required. Here we investigated leaf nutrient concentration and resorption in dominant species Cleistogenes songorica (C. squarrosa) and Stipa breviflora (S. breviflora) response to 15-years continuous grazing (moderate and heavy grazing) in desert steppe. Moderate grazing enhanced green leaf N and P content in C. songorica and partially increased N content in S. breviflora. Heavy grazing consistently increased N content in C. songorica, but its P content as well as N and P content in S. breviflora were largely stable. Moderate grazing enhanced NRE but unaffected PRE in both S. breviflora and C. songorica. Heavy grazing reduced NRE and PRE in C. songorica. Although soil variables (nutrients and moisture) did not affect foliar nutrients, it's a key driver of nutrient resorption efficiency. Of all measured influence factors, soil moisture is the one most important and negatively correlated with NRE and PRE in S. breviflora. While it was not observed in C. songorica. In S. breviflora, its NRE was adversely linked with soil N, in addition, both NRE and PRE were positively associated with green leaf nutrients. Senesced leaf nutrients are the predominant factor influencing nutrient resorption efficiency in C. songorica, which were adversely associated. Overall, our results indicate significant variations in nutrient resorption efficiency patterns between the two dominant species due to divergent plant adaptation strategies to grazing and the local environment. The foliar nutritional status and soil conditions may play significant roles in regulating nutrient resorption in arid long-term grazing desert steppe.


Assuntos
Ecossistema , Isótopos de Nitrogênio , Solo , Poaceae/fisiologia , Plantas , Nitrogênio/análise , Nutrientes , Fósforo , Folhas de Planta/química
5.
Environ Sci Pollut Res Int ; 31(10): 14775-14790, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38280165

RESUMO

Spartina alterniflora, an invasive plant widely distributed in China's coastal regions, has had a significant impact on the stability of wetland ecosystems and elemental biogeochemical cycles. The invasion of S. alterniflora has been found to lead to the accumulation of sulfides in the soil. The cycling of sulfur and iron in the soil is closely interconnected. Coastal estuarine wetlands are influenced by both freshwater in rivers and seawater tides, as well as the frequent variations in redox conditions caused by tidal fluctuations, which makes the cycling of sulfur and iron in the soil invaded by S. alterniflora more intricate. In this study, field surveys and laboratory experiments were conducted to explore the effects of S. alterniflora invasion and hydrological changes on the cycling of sulfur and iron as well as related functional microorganisms in the soil. The invasion of S. alterniflora showed an increase in soil reduced inorganic sulfur (RIS) components in both high and low marshes of Jiuduansha wetland, with higher content observed in summer and autumn. The tidal simulation experiments revealed abundant sulfate in seawater tidal conditions could promote the formation of acid volatile sulfides (AVS) in the soil of low marshes invaded by S. alterniflora and ensuring the continuous increase in AVS content. Diffusive gradients in-thin-films (DGT) technology indicated the existence of high-concentration soluble S2- enrichment zones in the soil of low marshes invaded by S. alterniflora, which may be related to S. alterniflora root exudates. Tidal action increased the relative abundance of sulfur-reducing bacteria (SRB) in the soil of low marshes, and under the influence of seawater tidal action, SRB exhibited higher relative abundance. However, S. alterniflora might inhibit the activity of iron-reducing bacteria (FeRB) in the soil of low marshes. In conclusion, S. alterniflora may enhance the sulfate reduction rate and promote the formation of free sulfides in tidal salt marsh ecosystems by releasing root exudates that stimulate the activity of SRB, while concurrently inhibiting the activity of FeRB and reducing their competition with SRB. This effect is particularly pronounced in low marshes under seawater tidal conditions. Thus, S. alterniflora is capable of rapidly invading tidal salt marshes by utilizing sulfides effectively.


Assuntos
Microbiota , Bactérias Redutoras de Enxofre , Áreas Alagadas , Solo/química , Espécies Introduzidas , Poaceae/fisiologia , Enxofre , Sulfatos , Sulfetos , China
6.
Ecology ; 105(3): e4254, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272568

RESUMO

Both bottom-up and top-down processes modulate plant communities. Fungal and oomycete pathogens are most common in global grasslands, and due to differences in their physiology, function, host range, and life cycles, they may differentially affect plants (in both intensity and direction). However, how fungal and oomycete pathogens regulate bottom-up and top-down effects on plant community biomass remains unclear. To this end, we conducted a 3-year field experiment in an alpine meadow incorporating mammalian herbivore exclosure, fungicide/oomyceticide application, and nitrogen addition treatments. We arranged 12 blocks with half randomly assigned to be mammalian herbivore exclosures (fenced to exclude grazing sheep), and the other half were fenced most of the year but not in winter (winter grazing control). Six 2.5 × 2.5 m square plots were established in each block, with each of the six plots assigned as control, nitrogen addition, fungicide application, oomyceticide application, nitrogen addition + fungicide application, and nitrogen addition + oomyceticide application. We found that fungicide application significantly increased plant community biomass (mainly Poaceae species) under nitrogen addition and promoted the bottom-up effect of nitrogen addition on plant community biomass by altering the community-weighted mean of plant height (via species turnover). Meanwhile, oomyceticide application significantly increased plant community biomass (mainly Poaceae species) when mammalian herbivores were excluded and weakened the top-down effect of winter grazing on plant community biomass by driving intraspecific variation in plant height. Our results highlight that fungal and oomycete pathogens play important (but differing) roles in mediating the effects of nutrient availability and higher trophic levels on plant community biomass. Mechanistically, we demonstrated that plant pathogen-related modulation of plant community biomass is achieved by alterations to plant height. Overall, this study combines both community and disease ecology to reveal complex interactions among higher trophic levels and their potential impacts on terrestrial ecosystem functioning under human disturbance.


Assuntos
Ecossistema , Fungicidas Industriais , Humanos , Animais , Ovinos , Biomassa , Nitrogênio/farmacologia , Fungicidas Industriais/farmacologia , Plantas , Poaceae/fisiologia , Mamíferos
7.
New Phytol ; 241(6): 2379-2394, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38245858

RESUMO

Increasing rainfall variability is widely expected under future climate change scenarios. How will savanna trees and grasses be affected by growing season dry spells and altered seasonality and how tightly coupled are tree-grass phenologies with rainfall? We measured tree and grass responses to growing season dry spells and dry season rainfall. We also tested whether the phenologies of 17 deciduous woody species and the Soil Adjusted Vegetation Index of grasses were related to rainfall between 2019 and 2023. Tree and grass growth was significantly reduced during growing season dry spells. Tree growth was strongly related to growing season soil water potentials and limited to the wet season. Grasses can rapidly recover after growing season dry spells and grass evapotranspiration was significantly related to soil water potentials in both the wet and dry seasons. Tree leaf flushing commenced before the rainfall onset date with little subsequent leaf flushing. Grasses grew when moisture became available regardless of season. Our findings suggest that increased dry spell length and frequency in the growing season may slow down tree growth in some savannas, which together with longer growing seasons may allow grasses an advantage over C3 plants that are advantaged by rising CO2 levels.


Assuntos
Pradaria , Poaceae , Poaceae/fisiologia , Ecossistema , Árvores/fisiologia , Solo , Estações do Ano , Água
8.
Oecologia ; 204(1): 83-93, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38108892

RESUMO

Increases in extremely large precipitation events (deluges) and shifts in seasonal patterns of water availability with climate change will both have important consequences for ecosystem function, particularly in water-limited regions. While previous work in the semi-arid shortgrass steppe of northeastern Colorado has demonstrated this ecosystem's strong sensitivity to growing season deluges, our understanding of ecosystem responses to deluges during the dormant season is limited. Here, we imposed experimental 100 mm deluges (~ 30% of mean annual precipitation) in either September or October in a native C4-dominated shortgrass steppe ecosystem to evaluate the impact of this post-growing season shift in water availability during the autumn and the following growing season. Soil moisture for both deluge treatments remained elevated compared with ambient levels through April as spring precipitation was atypically low. Despite overall low levels of productivity with spring drought, these deluges from the previous autumn increased aboveground net primary production (ANPP), primarily due to increases with C4 grasses. C3 ANPP was also enhanced, largely due to an increase in the annual C3 grass, Vulpia octoflora, in the October deluge treatment. While spring precipitation has historically been the primary determinant of ecosystem function in this ecosystem, this combination of two climate extremes-an extremely wet autumn followed by a naturally-occurring spring drought-revealed the potential for meaningful carryover effects from autumn precipitation. With climate change increasing the likelihood of extremes during all seasons, experiments which create novel climatic conditions can provide new insight into the dynamics of ecosystem functioning in the future.


Assuntos
Ecossistema , Pradaria , Estações do Ano , Secas , Chuva , Poaceae/fisiologia , Água
9.
BMC Plant Biol ; 23(1): 474, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37807079

RESUMO

BACKGROUND: Clonal plants can successfully adapt to various ecosystems. A trade-off between sexual and clonal reproduction is generally assumed in clonal plants, which may be influenced both by the characteristics of the plant itself and environmental conditions. Currently, it is unclear how climate change, and specifically warming and increased precipitation, might affect sexual and clonal reproduction in clonal plants. Therefore, this study aimed to investigate both the sexual and clonal reproduction responses of Stipa breviflora to warming and increased precipitation. A controlled experiment was conducted by inducing increases in precipitation (ambient condition, 25% and 50% increases) and warming (ambient temperature, 1.5 °C and 3.0 °C increases). RESULTS: Warming significantly influenced both the ratio of reproductive ramet shoot biomass to total shoot biomass, and the ratio of reproductive ramet number to total ramet number. Additionally, the ratio of reproductive ramet shoot biomass to total shoot biomass was also significantly affected by increased precipitation. Increased precipitation benefited sexual reproduction, while effects of warming on reproductive and/or vegetative ramets varied from negative to positive depending on precipitation conditions. There was no relationship between the number or shoot biomass of reproductive ramets and vegetative ramets. Reproductive ramets displayed greater sensitivity to climate change than vegetative ramets. CONCLUSIONS: The findings of our study suggest that there was no trade-off between sexual and clonal reproduction in S. breviflora. The combined impact of warming and increased precipitation promoted sexual reproduction but did not inhibit clonal reproduction. Clonal plants with the capacity for both sexual and clonal reproduction, may cope with climate change well via clonal reproduction, ensuring their survival.


Assuntos
Ecossistema , Reprodução , Poaceae/fisiologia , Biomassa , Células Clonais
10.
PLoS One ; 18(10): e0293495, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37889914

RESUMO

Disease may drive variation in host community structure by modifying the interplay of deterministic and stochastic processes that shape communities. For instance, deterministic processes like ecological selection can benefit species less impacted by disease. When communities have higher levels of disease and disease consistently selects for certain host species, this can reduce variation in host community composition. On the other hand, when host communities are less impacted by disease and selection is weaker, stochastic processes (e.g., drift, dispersal) may play a bigger role in host community structure, which can increase variation among communities. While effects of disease on host community structure have been quantified in field experiments, few have addressed the role of disease in modulating variation in structure among host communities. To address this, we conducted a field experiment spanning three years, using a tractable system: foliar fungal pathogens in an old-field grassland community dominated by the grass Lolium arundinaceum, tall fescue. We reduced foliar fungal disease burden in replicate host communities (experimental plots in intact vegetation) in three fungicide regimens that varied in the seasonal duration of fungicide treatment and included a fungicide-free control. We measured host diversity, biomass, and variation in community structure among replicate communities. Disease reduction generally decreased plant richness and increased aboveground biomass relative to communities experiencing ambient levels of disease. These changes in richness and aboveground biomass were consistent across years despite changes in structure of the plant communities over the experiment's three years. Importantly, disease reduction amplified host community variation, suggesting that disease diminished the degree to which host communities were structured by stochastic processes. These results of experimental disease reduction both highlight the potential importance of stochastic processes in plant communities and reveal the potential for disease to regulate variation in host community structure.


Assuntos
Festuca , Fungicidas Industriais , Lolium , Pradaria , Biomassa , Poaceae/fisiologia , Plantas , Biodiversidade , Ecossistema
11.
New Phytol ; 240(5): 1817-1829, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37658674

RESUMO

Shrub encroachment is a common ecological state transition in global drylands and has myriad adverse effects on grasslands and the services they provide. This physiognomic shift is often ascribed to changes in climate (e.g. precipitation) and disturbance regimes (e.g. grazing and fire), but this remains debated. Aeolian processes are known to impact resource distribution in drylands, but their potential role in grassland-to-shrubland state changes has received little attention. We quantified the effects of 'sandblasting' (abrasive damage by wind-blown soil) on the ecophysiology of dryland grass vs shrub functional types using a portable wind tunnel to test the hypothesis that grasses would be more susceptible to sandblasting than shrubs and, thus, reinforce transitions to shrub dominance in wind-erodible grasslands when climate- or disturbance-induced reductions in ground cover occur. Grasses and shrubs responded differently to sandblasting, wherein water-use efficiency declined substantially in grasses, but only slightly in shrubs, owing to grasses having greater increases in day/nighttime leaf conductance and transpiration. The differential ecophysiological response to sandblasting exhibited by grass and shrub functional types could consequently alter the vegetation dynamics in dryland grasslands in favour of the xerophytic shrubs. Sandblasting could thus be an overlooked driver of shrub encroachment in wind-erodible grasslands.


Assuntos
Ecossistema , Pradaria , Clima Desértico , Poaceae/fisiologia , Solo
12.
Sci Total Environ ; 904: 166185, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37591400

RESUMO

Coastal blue carbon ecosystems offer promising benefits for both climate change mitigation and adaptation. While there have been widespread efforts to transplant mangroves from the tropics to the subtropics and to introduce exotic saltmarsh plants like Spartina alterniflora in China, few studies have thoroughly quantified the chronological records of carbon sequestration with different organic carbon (OC) sources. To understand how variations in OC sources can affect the carbon sequestration potential of coastal wetland environment over time, we conducted a study on typical islands with two scenarios: S. alterniflora invasion and mangrove transplantation. Our study determined chronological records of carbon sequestration and storage from five sediment profiles and traced changes in the OC sources using carbon stable isotope (δ13C) and C:N ratios in response to these scenarios. The S. alterniflora invasion resulted in an 84 ± 19 % increase in the OC burial rate compared to unvegetated mudflats, while mangrove transplantation resulted in a 167 ± 74 % increase in the OC burial rate compared to unvegetated mudflats. S. alterniflora and mangroves showed greater carbon sequestration potential in areas with high supplies of suspended particulate matter, while mangroves needed to grow to a certain scale to display obvious carbon sequestration benefits. In the mangrove saltmarsh ecotone, mature mangrove habitats exhibited resistance to the S. alterniflora invasion, while mangrove transplantation in the environment invaded by S. alterniflora had a significant effect on OC contribution. Besides, plant-derived OC can be exported to the surrounding environment due to the rapid turnover of sediments. The blue carbon chronosequence-based estimation of OC sources and burial rates provides a useful reference for establishing carbon accounting policies.


Assuntos
Ecossistema , Áreas Alagadas , Sequestro de Carbono , Espécies Introduzidas , Plantas , Poaceae/fisiologia , Carbono/análise , Isótopos de Carbono , China
13.
Environ Sci Pollut Res Int ; 30(42): 96098-96113, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37563509

RESUMO

The effect of inoculation of Miscanthus × giganteus Greef et Deu by the plant growth promoting rhizobacteria (PGPRs) to the phytoremediation process and physio-biochemical plant's parameters was investigated in soil contaminated with the trace elements (TEs) from the Tekeli mining complex, Kazakhstan. Yeast Trichosporon sp. CA1, strains Rhizobium sp. Zn1-1, Shinella sp. Zn5-6, and Pseudomonas sp. CHA1-4, resistant to Zn and Pb, were isolated from the rhizosphere of M × g when the plant was cultivated in the same contaminated soil. Results illustrated that inoculation improved M × g adaptability to TEs toxicity by increasing the tolerance index to 2.9. The treatment enhanced the aboveground biomass yield by up to 163%, root biomass by up to 240%, chlorophyll content by up to 30%, and Chla/b ratio by up to 21%. Through M × g active growth and development, the peak activity of antioxidant enzymes was observed: activity of superoxide dismutase and glutathione reductase was induced, while the activity of catalase and ascorbate peroxidase was inhibited. Based on bioconcentration and translocation factors it was revealed that PGPRs selectively increased the uptake of TEs or stabilised them in the M × g rhizosphere. Inoculation with PGPRs increased the stabilization of Pb, V, Cr, Co, Ni, Cu, Cd, As, and Ba in the soil and plant tissues. Further research should focus on ex situ experiments using isolated PGPRs.


Assuntos
Metais Pesados , Poluentes do Solo , Oligoelementos , Oligoelementos/análise , Biodegradação Ambiental , Chumbo/análise , Poaceae/fisiologia , Plantas , Solo/química , Poluentes do Solo/análise , Raízes de Plantas/química , Metais Pesados/análise
14.
Sci Total Environ ; 897: 165338, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37414175

RESUMO

Overgrazing generally induces dwarfism in grassland plants, and these phenotypic traits could be transmitted to clonal offspring even when overgrazing is excluded. However, the dwarfism-transmitted mechanism remains largely unknown, despite generally thought to be enabled by epigenetic modification. To clarify the potential role of DNA methylation on clonal transgenerational effects, we conducted a greenhouse experiment with Leymus chinensis clonal offspring from different cattle/sheep overgrazing histories via the demethylating agent 5-azacytidine. The results showed that clonal offspring from overgrazed (by cattle or sheep) parents were dwarfed and the auxin content of leaves significantly decreased compared to offspring from no-grazed parents'. The 5-azaC application generally increased the auxin content and promoted the growth of overgrazed offspring while inhibited no-grazed offspring growth. Meanwhile, there were similar trends in the expression level of genes related to auxin-responsive target genes (ARF7, ARF19), and signal transduction gene (AZF2). These results suggest that DNA methylation leads to overgrazing-induced plant transgenerational dwarfism via inhibiting auxin signal pathway.


Assuntos
Metilação de DNA , Epigênese Genética , Bovinos , Animais , Ovinos , Ácidos Indolacéticos/metabolismo , Poaceae/fisiologia
15.
Curr Biol ; 33(13): 2814-2822.e4, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37327783

RESUMO

Stomata are controllable micropores formed between two adjacent guard cells (GCs) that regulate gas flow across the plant surface.1 Grasses, among the most successful organisms on the planet and the main food crops for humanity, have GCs flanked by specialized lateral subsidiary cells (SCs).2,3,4 SCs improve performance by acting as a local pool of ions and metabolites to drive changes in turgor pressure within the GCs that open/close the stomatal pore.4,5,6,7,8 The 4-celled complex also involves distinctive changes in geometry, having dumbbell-shaped GCs compared with typical kidney-shaped stomata.2,4,9 However, the degree to which this distinctive geometry contributes to improved stomatal performance, and the underlying mechanism, remains unclear. To address this question, we created a finite element method (FEM) model of a grass stomatal complex that successfully captures experimentally observed pore opening/closure. Exploration of the model, including in silico and experimental mutant analyses, supports the importance of a reciprocal pressure system between GCs and SCs for effective stomatal function, with SCs functioning as springs to restrain lateral GC movement. Our results show that SCs are not essential but lead to a more responsive system. In addition, we show that GC wall anisotropy is not required for grass stomatal function (in contrast to kidney-shaped GCs10) but that a relatively thick GC rod region is needed to enhance pore opening. Our results demonstrate that a specific cellular geometry and associated mechanical properties are required for the effective functioning of grass stomata.


Assuntos
Estômatos de Plantas , Poaceae , Poaceae/fisiologia , Estômatos de Plantas/fisiologia , Plantas
16.
Sci Total Environ ; 893: 164886, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37327889

RESUMO

Phytoliths are amorphous silica formed gradually in plant tissue, which have great potential to mitigate climate change due to their resistance to decomposition and their ability to occlude organic carbon. The accumulation of phytoliths is regulated by multiple factors. However, the factors controlling its accumulation remain unclear. Here, we investigated phytolith content in Moso bamboo leaves of different ages collected from 110 sampling sites of their main distribution regions across China. The controls for phytolith accumulation were studied by correlation and random forest analyses. Our results showed that phytolith content is leaf age-dependent (16-month-old leaf >4-month-old leaf >3-month-old leaf). Phytolith accumulation rate in Moso bamboo leaves is significantly correlated with mean monthly temperature (MMT) and mean monthly precipitation (MMP). About 67.1 % of the variance of the phytolith accumulation rate could be explained by multiple environmental factors, mainly MMT and MMP. Therefore, we conclude that the weather is the major driver that regulates the phytolith accumulation rate. Our study provides a unique dataset for estimating phytolith production rate and the potential carbon sequestration of phytolith through climatic factors.


Assuntos
Carbono , Poaceae , Poaceae/fisiologia , Sequestro de Carbono , Folhas de Planta , China , Solo
17.
Sci Total Environ ; 885: 163824, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37127156

RESUMO

The grass family is responsible for most of peoples pollen allergies, and the severity of pollen-based asthma and allergies is expected to increase with global climate change. Identifying grass species through standard pollen monitoring techniques have limitations due to challenges in species-specific pollen identification. As a result, these monitoring methods end up grouping all Poaceae species together, even though there are hundreds of grass species in Europe with flowering times that may vary drastically among species. Given this lack of specificity, it is hard to know which grass species are responsible for causing allergies over the pollen season, and how different species are affected by climate change. To address these issues, we obtained phenological data from thousands of herbarium specimens collected across Denmark spanning 190 years and used pollen monitoring data collected over the last four decades to determine the response of flowering time to climate change for 12 allergenic grass species, and identify which species are likely the biggest contributors to grass pollen loads throughout the pollen season. We find that pollen season duration is lasting longer and starting earlier, and the maximum pollen loads are occurring earlier in response to climate warming. Herbarium specimens provide taxonomic resolution and reveal that many grass species are flowering earlier in response to warmer spring temperatures. Seven out of the 12 species studied in Denmark are identified as major contributors to airborne pollen based on their flowering times, relative abundance and overlap with the time of the year when maximum pollen loads are detected. Four species (Poa pratensis, Dactylis glomerata, Festuca rubra, Holcus lanatus) significantly shifted their flowering time in response to warming temperatures and are flagged as of particular concern to allergy sufferers. Using data derived from natural history collections can contribute to the advancement of pollen forecasting for asthma and allergy patients under both current conditions and amidst future global changes.


Assuntos
Asma , Hipersensibilidade , Rinite Alérgica Sazonal , Humanos , Poaceae/fisiologia , Pólen , Alérgenos , Estações do Ano , Mudança Climática , Temperatura
18.
Sci Total Environ ; 887: 164003, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37169185

RESUMO

Growing Miscanthus species and hybrids has received strong scientific and commercial support, with the majority of the carbon (C) modelling predictions having focused on the high-yield, sterile and noninvasive hybrid Miscanthus × giganteus. However, the potential of other species with contrasting phenotypic and physiological traits has been seldom explored. To better understand the mechanisms underlying C allocation dynamics in these bioenergy crops, we pulse-labelled (13CO2) intact plant-soil systems of Miscanthus × giganteus (GIG), Miscanthus sinensis (SIN) and Miscanthus lutarioriparius (LUT) and regularly analysed soil respiration, leaves, stems, rhizomes, roots and soils for up to 190 days until leaf senescence. A rapid isotopic enrichment of all three species was observed after 4 h, with the amount of 13C fixed into plant biomass being inversely related to their respective standing biomass prior to pulse-labelling (i.e., GIG < SIN < LUT). However, both GIG and LUT allocated more photoassimilates in the aboveground biomass (leaves+stems = 78 % and 74 %, respectively) than SIN, which transferred 30% of fixed 13C in its belowground biomass (rhizomes+roots). Although less fixed 13C was recovered from the soils (<1 %), both rhizospheric and bulk soils were signficantly more enriched under SIN and LUT than under GIG. Importantly, the soils under SIN emitted less CO2, which suggests it could be the best choice for reaching C neutrality. These results from this unique large-scale study indicate that careful species selection may hold the success for reaching net GHG mitigation.


Assuntos
Dióxido de Carbono , Carbono , Biomassa , Poaceae/fisiologia , Produtos Agrícolas , Solo
19.
New Phytol ; 239(1): 47-53, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37195101

RESUMO

Stomata are breathing pores on leaves that balance photosynthetic carbon dioxide uptake and water vapor loss. Stomatal morphology and complexity are rather diverse when considering stomatal subsidiary cells (SCs). Subsidiary cells are adjacent to the central guard cells (GCs) and are morphologically distinct from other epidermal cells. Yet, how various SCs develop and whether and how they support stomatal gas exchange physiology outside of the grass family is largely unknown. Here, we discuss the development, ontogeny, and putative function of paracytic vs anisocytic SCs, which can be found in grasses and Crassulaceae succulents, respectively. First, we highlight recent advances in understanding how grasses form stomatal SCs. We then summarize novel insights into stomatal development in SC-less Arabidopsis to speculate on how this stomatal program might be rewired to enable anisocytic SC formation. Finally, we discuss the functional relevance of paracytic SCs in grasses and the putative roles of anisocytic SCs in succulents.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Poaceae/fisiologia , Estômatos de Plantas/fisiologia , Folhas de Planta/fisiologia , Arabidopsis/fisiologia
20.
Environ Sci Pollut Res Int ; 30(21): 60663-60677, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37039918

RESUMO

Plant litter decomposition plays a crucial role in the flow of nutrients and energy in ecosystems. However, the mechanism of bacterial communities regulating litter decomposition under climate warming in temperate wetlands remains largely unknown. The objective of this study was to determine the influences of temperature on decomposition and the bacterial regulatory mechanism under climate warming in temperate wetlands. In this study, we conducted a 1.5-year litter decomposition warming experiment using dominant plant species in the temperate lake wetlands of the North China Plain. Our results showed that the decomposition rate (K) had a significant positive correlation with temperature, and the non-additive effects of litter decomposition could be clearly observed in the mixtures of Phragmites australis and Typha angustata, especially under warming conditions. Among the three types of litter, Phragmites australis had the highest temperature sensitivity (2.75), which meant that it would be most affected by climate change in the future. The concentrations of C and N showed a significant positive correlation with the decomposition rate and were mainly driven by Proteobacteria and Firmicutes, while the concentration of lignin and the lignin:N ratio had a highly significant negative correlation with the decomposition rate and were mainly driven by Bacteroidota and Actinobacteriota. Furthermore, the bacterial cooccurrence network revealed that the abundance of Firmicutes and Desulfobacterota increased significantly, and positive edges accounted for 67.81% ~ 71.14% under warming conditions. The bacterial networks of litter decomposition were mainly composed of symbiotic relationships, and warming was helpful for improving the positive correlations and symbiotic relationships of bacterial flora and sped up the litter decomposition process. These results will be helpful to further understand the mechanism of bacterial communities regulating litter decomposition under climate warming in temperate wetland ecosystems.


Assuntos
Ecossistema , Áreas Alagadas , Lignina , Poaceae/fisiologia , Plantas , Bactérias , Firmicutes , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...